What new health-and-safety mandate will the home-energy community embrace next? We have worst-case combustion testing, the new lead regulations, the ASHRAE 62.2 ventilation standard, and new asbestos policies. Given the distraction from the energy-conservation mission and the high cost, I can’t help but wonder how these mandates relate to statistical risk and how effectively the prescribed testing and mitigation strategies reduce that risk?

Problems with the Current Reasoning

A new literature review by Lawrence Berkeley Laboratory (LBL) throws doubt on the value of worst-case combustion testing as part of home energy conservation programs. The literature review, titled: Assessment of Literature Related to Combustion Appliance Venting Systems, asserts thatacute CO [carbon monoxide] poisoning from vented combustion appliances is extremely rare”. This paper also states the following: “Established methods for evaluating the safety of residential combustion appliance venting systems [worst-case combustion testing] produce results that are not directly related to risk”.
The Building Performance Institute (BPI) is known throughout the weatherization and home-performance industry for their emphasis on worst-case combustion testing of open-combustion appliances such as furnaces, boilers, space heaters, and water heaters. Worst-case combustion testing has driven an expensive, nationwide training-and-implementation initiative over the past 20 years.  It was designed to educate energy auditors, inspectors, and technicians about the assumed health risks of spillage and CO poisoning.

The Real Problems

The LBL report cites a Consumer Product Safety Commission (CPSC) study of the 184 total CO-related accidental home deaths in 2007. Ranges and ovens caused 4 deaths; water heaters caused 4 deaths; furnaces caused 28 deaths; and other heating systems including unventilated space heaters caused 34 deaths.
These statistics, and the fact that thousands of American homes still heat with unventilated space heaters, are reasons to question the “widespread menace of CO” purported within the home energy conservation community. These statistics don’t support either the risk claims or the mitigation imperatives that tens of thousands of energy specialists have studied, learned, and adopted.
Compare the home CO death statistics to the following deaths in homes during 2007:

  • approximately 15,000  falling deaths
  • 9,500 poisoning deaths
  • 3,700 fire deaths

I’m not suggesting that we discontinue combustion safety testing. I question whether the risk reduction (or lack of) merits the complexity and time investment of  the current worst-case testing procedure. If we want to make homes safer to offset possible unintended consequences of weatherization, why not attack the more statistically dangerous hazards: falls, poisoning, and fires?
Read more about this topic in the continuing post:  Combustion Safety and Risk Reduction

Photo: History King