A-2 Geometry
 Plane Geometry

b

Rectangle
Area: $\mathrm{A}=\mathrm{lw}$
Perimeter: $\mathrm{P}=2 \mathrm{l}+2 \mathrm{w}$

Square

Area: $\mathrm{A}=\mathrm{s}^{2}$
Perimeter: $P=4 \mathrm{~s}$

Triangle
Area: $\mathrm{A}={ }^{1} /{ }_{2} \mathrm{bh}$
Sum of angles:
$\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$

Right Triangle

Pythagorean Theorem: $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$

Parallelogram
Area: $\mathrm{A}=\mathrm{b} \cdot \mathrm{h}$

Trapezoid
Area: $\mathrm{A}=1 / 2 \mathrm{~h}(\mathrm{a}+\mathrm{b})$

Circle
Area: $\mathrm{A}=\pi \mathrm{r}^{2}$
Circumference: $\mathrm{C}=\pi \mathrm{d}=2 \pi \mathrm{r}$

Solid Geometry

Cube
Volume: V = s^{3}

Right Circular Cylinder
Volume: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$
Lateral Surface Area:
$\mathrm{L}=2 \pi \mathrm{rh}$
Total Surface Area:
$S=2 \pi r h+2 \pi r^{2}$

Right Circular Cone Volume: $V=1 / 3 \pi r^{2} h$
Lateral Surface Area:
$\mathrm{L}=\pi \mathrm{rs}$
Total Surface Area:
$S=\pi r^{2}+\pi r s$

Sphere
Volume: $V={ }^{4}{ }_{3} \pi r^{3}$
Surface Area: $S=4 \pi r^{2}$

